Sia f la funzione definita, per x > 0, da $f(x) = x^2 - 2x + 30 - 24\ln(x)$.

- Si provi che f'(x) = ^{2(x-4)(x+3)}/_x e si provi altresì che f(x) assume solo valori positivi.
 Un'azienda verifica che gli oggetti che essa produce hanno un costo unitario di f(x) euro quando
- 2. Un'azienda verifica che gli oggetti che essa produce hanno un costo unitario di f(x) euro quando $1 \le x \le 10$ e x esprime le centinaia di oggetti prodotti. Per esempio: per 120 oggetti prodotti, il costo di produzione, per oggetto, arrotondato a meno di 10^{-2} , è $f(1,2) \approx 24,66$. Questo significa che l'azienda, per non lavorare in perdita, dovrà vendere ciascun oggetto prodotto a più di 24,66 euro. Si calcoli f(2,2) arrotondato a meno di 10^{-2} e si interpreti il risultato seguendo l'esempio precedente. Si calcoli altresì f(7,19) e f(8).
- 3. Si mostri, illustrando il ragionamento seguito, che l'equazione f(x) = 20 ammette esattamente due soluzioni reali appartenenti all'intervallo [1;10] e se ne determini il valore arrotondato a meno di 10^{-2}
- 4. Dai risultati precedenti si deducano le informazioni relative all'attività dell'azienda per non lavorare in perdita nel caso essa decida di vendere gli oggetti prodotti a 20 euro ciascuno. Per quali quantità di oggetti prodotti l'azienda guadagna? Qual è il valore del guadagno massimo?

SOLUZIONE

Punto 1

$$f(x) = x^2 - 2x + 30 - 24 \ln x$$

$$f'(x) = 2x - 2 - \frac{24}{x} = \frac{2x^2 - 2x - 24}{x} = \frac{2(x^2 - x - 12)}{x} = \frac{2(x - 4)(x + 3)}{x}$$

Punto 2

$$f(2.2) \approx 11.52$$

se l'azienda produce 220 oggetti dovrà vendere ciascun articolo a non meno di 11,52 €.

Studiando la derivata trovata al punto 1 è possibile verificare che la funzione ha un minimo per x = 4 che corrisponde a

$$f(4) \approx 4.73$$

è quindi possibile prevedere che per x = 7,19 e x = 8 il costo unitario sarà maggiore di 4,73, infatti

$$f(7,19) \approx 19,97$$

$$f(8) \approx 28,09$$

Punto 3

$$f(x) = 20 \rightarrow x^2 - 2x + 30 - 24 \ln(x) = 20$$

Dopo aver separato la parte algebrica da quella trascendente

¹La proposta è un tema elaborato per la maturità 2015 ma non assegnato. Trae spunto da un problema assegnato al baccalaureato francese degli anni scorsi. Contiene richieste di arrotondare dati numerici.

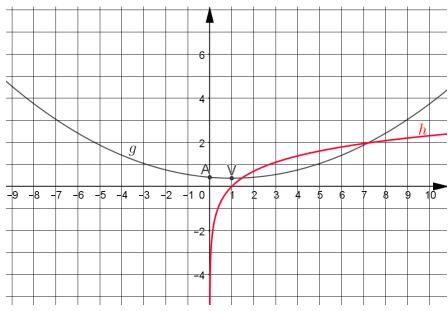
$$x^2 - 2x + 10 = 24 \ln(x)$$
 $\rightarrow \frac{1}{24} x^2 - \frac{1}{12} x + \frac{5}{12} = \ln(x)$

risolvo per via grafica

$$g(x) = \frac{1}{24}x^2 - \frac{1}{12}x + \frac{5}{12}$$

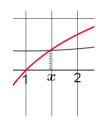
parabola con concavità rivolta verso l'alto, vertice $V\left(1; \frac{3}{8}\right)$, passa per $A\left(0; \frac{5}{12}\right)$, non interseca l'asse delle ascisse quindi $g(x) > 0 \quad \forall \ x \in R$

$$h(x) = \ln(x)$$
 curva logaritmica crescente, positiva $\forall x > 1$



Le curve si incontrano in due punti le cui ascisse corrispondono alle soluzioni richieste

Mi limito a calcolare la prima radice.



È possibile delimitare l'intervallo sfruttando il teorema di esistenza degli zeri infatti, poiché f(1) = 9 e $f(2) \approx -6.64$ \exists almeno un 1 < x < 2 t.c. f(x) = 0.

Applico il metodo di bisezione

a	f(a)	b	f(b)	(a+b)/2	f[(a+b)/2]
1	9	2	-6,64	1,5	-0,48
1	9	1,5	-0,48	1,25	3,71
1,25	3,71	1,5	-0,48	1,375	1,50
1,375	1,50	1,5	-0,48	1,4375	0,48
1,4375	0,48	1,5	-0,48	1,46875	-0,006
1,4375	0,48	1,46875	-0,00615	1,453125	0,24
1,453125	0,23613	1,46875	-0,00615	1,4609375	0,11
1,4609375	0,1145829085	1,46875	-0,00615	1,46484375	0,05411
1,46484375	0,05411	1,46875	-0,00615	1,466796875	0,02395
1,466796875	0,02395	1,46875	-0,00615		

1,466796875 < x < 1,46875

 $x \approx 1,47$

L'altra radice è 7,19 (trovata con calcolatrice)

Il costo unitario è di 20 € se si producono 147 oggetti oppure 719.

Ricordando che Guadagno unitario = Ricavo unitario - Costo unitario

$$G(x) = 20 - (x^2 - 2x + 30 - 24\ln(x))$$

$$G(x) = -x^2 + 2x + 24 \ln(x) - 10$$
 funzione guadagno unitario, definita $\forall x > 0$

Il guadagno è positivo per

$$-x^2 + 2x + 24\ln(x) - 10 > 0$$
 per

$$\ln(x) > \frac{1}{24}x^2 - \frac{1}{12}x + \frac{5}{12}$$
 verificata (vedi soluzione punto 3) per 1,47 < x < 7,19

$$G'(x) = -2x + 2 + \frac{24}{x}$$
 $G'(x) = 0$ \rightarrow $-2x + 2 + \frac{24}{x} = 0$

$$\frac{-2x^2 + 2x + 24}{x} = 0$$

$$\frac{-2(x-4)(x+3)}{x} = 0$$

$$G'(x) = 0$$
 per $x = 4$

$$G'(x) > 0$$
 per $0 < x < 4$

$$G'(x) < 0$$
 per $x > 4$

La quantità di oggetti che permetterà il massimo guadagno unitario è 400. Il guadagno massimo è

$$G_{Max} = G(4) \cdot 100 = 1527{,}11 \in$$